科普|走近“夜视仪”的过去与未来
澎湃新闻
原标题:科普|走近“夜视仪”的过去与未来
女子睡醒为何如此疲惫?
新婚夫妇的门为何夜夜被敲?
真相为何如此扑朔迷离?
这背后到底隐藏着哪些不为人知的玄机?
对于拥有猫猫的铲屎官们来说,这些问题的答案可能是:你家猫半夜又在你的卧室捣乱了。。。要是你还坚称猫猫是安分守己的“好孩子”,那么我建议你在卧室安装一个夜视摄像头,看看你睡着后的小猫咪都在干嘛。
比如:
你睡着后的猫咪都在干嘛来源:没品图
夜视仪

要是你还坚称猫猫是安分守己的“好孩子”,那么我建议你在卧室安装一个夜视摄像头,看看你睡着后的小猫咪都在干嘛。
比如:
你睡着后的猫咪都在干嘛来源:没品图
夜视仪
来源:军报记者

1
微光夜视仪
光电阴极将微弱的原始光信号通过光电效应转化成光电子,再通过微通道板对电子进行倍增,利用二次发射的电子能将光电子数量增加数百上千倍,最后在荧光屏幕 (阳极)上将增强后的电子信号再次转换为光学信号,让人眼可以看到。在整个过程中,电子会被外加的静电场加速,进一步增强信号。
当光子撞击到光电阴极 (通常是碱金属薄膜或者砷化镓一类的半导体物质)后,材料会吸收光子的能量,如果这个能量大于这种材料的逸出功,光电子就会被激发出来,这就是光电效应现象。
爱因斯坦也由于“他对理论物理学的成就,特别是光电效应定律的发现”,获得1921年诺贝尔物理学奖。

1
微光夜视仪
光电阴极将微弱的原始光信号通过光电效应转化成光电子,再通过微通道板对电子进行倍增,利用二次发射的电子能将光电子数量增加数百上千倍,最后在荧光屏幕 (阳极)上将增强后的电子信号再次转换为光学信号,让人眼可以看到。在整个过程中,电子会被外加的静电场加速,进一步增强信号。
当光子撞击到光电阴极 (通常是碱金属薄膜或者砷化镓一类的半导体物质)后,材料会吸收光子的能量,如果这个能量大于这种材料的逸出功,光电子就会被激发出来,这就是光电效应现象。
爱因斯坦也由于“他对理论物理学的成就,特别是光电效应定律的发现”,获得1921年诺贝尔物理学奖。
微通道板MCP来源:bilibili @中智科仪
2
红外热成像夜视仪
微光夜视仪固然好用,但在阴天和漆黑无光或烟雾条件下使用效果就不太好了,这时候红外热成像夜视仪就派上用场了。顾名思义,热成像涉及到“热”和“成像”两个方面。热,一切物体都会向四周进行热辐射,因此可以通过一定的手段捕捉到这些热辐射信号,并将其转化成便于我们观察的图像。热力学告诉我们,一切温度高于绝对零度 (-273.15℃)的物体都能产生热辐射,热辐射的光谱是连续谱,波长理论上可以从0到∞,而且温度越高,热辐射中短波的成分也越多。
微光夜视仪固然好用,但在阴天和漆黑无光或烟雾条件下使用效果就不太好了,这时候红外热成像夜视仪就派上用场了。顾名思义,热成像涉及到“热”和“成像”两个方面。热,一切物体都会向四周进行热辐射,因此可以通过一定的手段捕捉到这些热辐射信号,并将其转化成便于我们观察的图像。热力学告诉我们,一切温度高于绝对零度 (-273.15℃)的物体都能产生热辐射,热辐射的光谱是连续谱,波长理论上可以从0到∞,而且温度越高,热辐射中短波的成分也越多。
与照相机的原理相仿,红外热成像仪也有一个用来收集和聚焦红外光的镜头和探测其强度的感光元件。
红外探测器的表面布满了形成阵列的“微桥”,“微桥”由多层材料组成,由上到下分别是红外吸收层、热敏层还有起到支撑与电连接作用的“桥臂”和“桥墩”。当外界的红外信号通过镜头聚焦到探测器焦平面阵列上时,各个吸收层吸收红外线能量后会分别产生细微的温度变化,从而引起各微桥的热敏层电阻值发生相应的变化,并将这些变化转换成电信号输出,经过探测器外的进一步数据处理,我们就能得到反映目标场景温度分布的可视化图像。
某水果店
我们在探测器上得到的原始数据,只能定性地描述测量场景中的热辐射分布,但并不能给出物体实际的温度。这就需要我们给物体温度和辐射数据之间的关系做一个定标,我们通常利用黑体作为基准源。
开有小孔的腔体可以模拟黑体
考虑到能量守恒,黑体将会把其吸收到的所有能量也同时辐射出来,而普通物体会有反射或者透射造成的能量损失,因此在一定温度下,黑体的辐射能力是最强的。随着温度上升,黑体所辐射出来的电磁波则称做黑体辐射。
相同温度、不同发射率的物体在红外热成像仪上亮度是不同的。因此,我们还需要人为地将我们待测物体的发射率告诉仪器,才可能得到较为准确的温度值。另外,温度的测量值还会被测量距离,环境因素所影响,在这里就不做过多赘述了。
3
未来的夜视
除了不断地提高各种夜视仪器的性能之外,科学家们已经不满足于正常意义上的夜视仪器了。想象一下,如果人眼可以突破可见光的限制,直接“看到”红外波段的电磁波,不借助任何仪器就可以实现夜视,这该有多方便啊。
这种增强的红外探测能力似乎并没有干扰或者取代动物自身具有的视觉能力,且不需要外部电源,能保持长达两个月的活性。这项技术除了可以应用于本来就需要夜视的领域,甚至还可以为色盲症提供解决方案。
人类对于夜视还在不断地探索,也许在未来的某一天,人类真的可以不费力地突破自然的视觉限制,以全新的视角来看待这个世界。
好的,回到标题的问题。这到底是为什么呢?为什么呢?什么呢?
参考文献:
1.微光夜视仪 百度百科
2.非制冷红外焦平面探测器——热成像系统的核心,国际角逐的焦点 知乎
3.红外测温这些事 (热成像科普系列第二篇) 知乎
4.红外热成像仪测量体温的原理与精度限制 知乎
5.王丽, 尚晓星, 王瑛. 微光夜视仪的发展. 中国光学期刊网, 2008
6.王江安, 肖伟岸, 申林. 海空背景下目标红外辐射特征分析. 海军工程大学学报, 2001
7.Yuqian Ma et al. Mammalian Near-Infrared Image Vision through Injectable and Self-Powered Retinal Nanoantennae. Cell, 2019
来源:中科院物理所